
django-monitor Documentation
Release 0.2 rc

Rajeesh Nair

December 20, 2015

Contents

1 Introduction to Django-monitor 3
1.1 About . 3
1.2 Installation . 3
1.3 Features . 4

2 How to use (for developers) 5
2.1 Registration (Enqueue) . 5
2.2 Special model-admin class . 6
2.3 Related moderation . 6
2.4 Data-protection . 6
2.5 Creation of objects by code . 7
2.6 Post-moderation hook . 7

3 How to use (for admin-users) 9
3.1 Who can moderate . 9
3.2 What to moderate & from where . 9
3.3 How to moderate . 11

4 Indices and tables 13

i

ii

django-monitor Documentation, Release 0.2 rc

Contents:

Contents 1

django-monitor Documentation, Release 0.2 rc

2 Contents

CHAPTER 1

Introduction to Django-monitor

Note: You can skip this chapter if you have already read the README document in source path.

1.1 About

Moderation seems to be some job each one want to do in their own way. Django-monitor is a django-app to moderate
model objects. It was started as a clone of the django-gatekeeper project but to meet a different set of business
requirements.

The terms, ‘‘monitor‘‘ and ‘‘moderate‘‘ are used with same meaning everywhere in the source.

Here, the moderation process is well integrated with django-admin. That is, all moderation actvities are performed
from within the changelist page itself.

1.2 Installation

1. Directly from the python package index

(a) Using pip:

$ pip install django_monitor

(b) Using easy_install:

$ easy_install django_monitor

2. OR Directly from the mercurial repo

(a) Clone the repo (if you have hg installed):

$ hg clone http://bitbucket.org/rajeesh/django-monitor/

3. OR Download & install from available archives

• Get the archive from any of the following locations:

– http://bitbucket.org/rajeesh/django-monitor/downloads

– http://pypi.python.org/pypi/django-monitor#downloads

• Install using the setuptools as given below:

3

http://bitbucket.org/rajeesh/django-monitor/downloads
http://pypi.python.org/pypi/django-monitor#downloads

django-monitor Documentation, Release 0.2 rc

$ tar xzf django-monitor-xxx.tar.gz
$ cd django-monitor-xxx
$ python setup.py install

• If setuptools is not installed, you may copy the django_monitor directory to somewhere in your python
path.

4. Then add ‘django_monitor’ to your project’s settings.INSTALLED_APPS.

1.3 Features

1.3.1 Model-specific permission

Each moderated model will have an associated moderate permission. To approve or challenge any object created for a
particular model, users need to have the corresponding permission.

1.3.2 Auto-moderation

Any object created by a user with add permission will have an In Pending status. If the user has got moderate
permission also, the object created will automatically get approved (status becomes Approved).

1.3.3 Moderation from within admin changelist

The changelist of a moderated model displays the current moderation status of all objects. Also, you can filter the
objects by their moderation status. Three actions are available for moderation. To moderate, user just need to select
the objects, choose appropriate action and press Go.

1.3.4 Related moderation

When a manager moderates some model objects, there may be some other related model objects which also can
get moderated along with the original ones. The developer can specify such related models to be moderated during
registration.

1.3.5 Data protection

The developer can prevent admin-users from changing values of selected fields of approved objects. Deleting approved
objects also can be prevented if your client’s business requires that.

4 Chapter 1. Introduction to Django-monitor

CHAPTER 2

How to use (for developers)

2.1 Registration (Enqueue)

Register the model for moderation using django_monitor.nq.

Example

import django_monitor
Your model here
django_monitor.nq(YOUR_MODEL)

The full signature is...

django_monitor.nq(
model, [rel_fields = [], can_delete_approved = True,
manager_name = 'objects', status_name = 'status',
monitor_name = 'monitor_entry', base_manager = None]

)

model is the only required argument. Other optional arguments follow:

• rel_fields: List of related fields to be moderated along with this. Read more details below at Related
moderation.

• can_delete_approved: To prevent admin-users from deleting approved objects, set this to False. De-
fault is True. Read more details below at Data-protection.

• manager_name: We assume that objects is the name of the manager instance of your model. If you want
to use a different name for the instance, specify the name with manager_name parameter.

• status_name: By default, the moderation status field is named as status. If you prefer some other name,
specify it.

• monitor_name: A MonitorEntry object will be created to monitor each object of moderated model. By
default, it is referred as monitor_entry. If you prefer some other name, specify it.

• base_manager: Django-monitor replaces the manager of moderated model with a special manager class
derived from the original. Leave this as None if you want to use the default manager class. If you have written
a custom manager for the model, you may specify it here.

5

django-monitor Documentation, Release 0.2 rc

2.2 Special model-admin class

We build admin classes for moderated models using MonitorAdmin instead of django’s built-in ModelAdmin.
Always remember to inherit from MonitorAdmin when you define model-admin class for your moderated model.

in your admin.py
from django_monitor.admin import MonitorAdmin
class YourModelAdmin(MonitorAdmin):

pass

2.3 Related moderation

This is useful when your model is foreign key to some other model and those model objects are added inline to the
former. So when you check and approve the former model object, you might have verified all those inline objects too
and so they too can be approved along with it. See the example:

In admin.py
class BookAdmin(MonitorAdmin):

inlines = ['SupplementInline',]

In models.py
class Book(model.Model):

name = models.CharField(max_length = 100)

class Supplement(models.Model):
name = models.CharField(max_length = 100)
book = models.ForeignKey(Book, related_name = 'supplements')

django_monitor.nq(Book, rel_fields = ['supplements'])
django_monitor.nq(Supplement)

Remember that both models should be put in moderation queue.

2.4 Data-protection

Business organizations may require their applications to prevent admin users from modifying or deleting
approved objects. We allow developers to enable that using two parameters, protected_fields and
can_delete_approved.

MonitorAdmin.protected_fields can be used to prevent users from changing values of certain fields in
approved objects. Specify the field names as you would do with readonly_fields. See the example below:

in your admin.py
class YourModelAdmin(MonitorAdmin):

protected_fields = ['field1', 'field2']

can_delete_approved is an optional parameter you pass to django_monitor.nq. Its default value is True
which allows users to delete all objects. If this is set to False, admin-user can not delete an object once it is approved.
Deleting either un-moderated or pending or challenged objects can be done as usual. You still can delete approved
objects by code or from the django-shell.

6 Chapter 2. How to use (for developers)

django-monitor Documentation, Release 0.2 rc

2.5 Creation of objects by code

The above sections shared tips on how to prepare your application for moderation by admin-users. What about the
objects you create by code? All objects created by code will be in pending status by default. You can moderate them
by code using the following public methods of the moderated model:

Note: user is an optional parameter in all those methods described below. Please pass the current user to the
methods in all possible cases. request.user can be used for this whenever request is available. Otherwise, use
the function, django_monitor.middleware.get_current_user.

1. approve:

approve([user = None, notes = ''])

2. challenge:

challenge([user = None, notes = ''])

3. reset_to_pending:

reset_to_pending([user = None, notes = ''])

4. moderate (to use when status is available during runtime only):

moderate(status, [user = None, notes = ''])

An example usage

>>> my_inst = MyModel.objects.create(arg1 = 1)
>>> my_inst.approve()

In addition, there are 3 public boolean properties also to let you know which moderation status a particular object is
in.

1. is_approved

2. is_challenged

3. is_pending

An example usage

>>> my_inst = MyModel.objects.create()
>>> # Will be in pending status by default.
>>> my_inst.is_approved
... False
>>> my_inst.is_pending
... True
>>> my_inst.approve()
>>> my_inst.is_approved
... True

2.6 Post-moderation hook

If you want to perform something after an object is moderated, you can make use of the post_moderation signal
as in the below example:

2.5. Creation of objects by code 7

django-monitor Documentation, Release 0.2 rc

from django_monitor import post_moderation

handler_func: function to handle your post moderation activities.
def handler_func(sender, instance, **kwargs):

sender: MyModel
instance: my_model instance that was just moderated
pass

MyModel: The model whose moderation you are watching.
class MyModel(models.Model):

pass

post_moderation.connect(handler_func, sender = MyModel)

Note that the moderated object will be passed as the instance and its model as the sender. This will help you to
write separate handlers for each model.

8 Chapter 2. How to use (for developers)

CHAPTER 3

How to use (for admin-users)

All moderation activities can be performed from within the admin interface itself. Following sections describe the
process in detail. The figures are based on an example app, TestApp with models like Author and Book.

3.1 Who can moderate

Django-monitor creates a moderate permission for each moderated model. To moderate any object of a model, user
need to have permission for that particular model. The superuser must assign those permissions to the appropriate
users as they would do with other permissions.

3.2 What to moderate & from where

To see and moderate the pending/challenged objects of a particualr model, visit the change-list page of that model. By
default, all existing objects appear there. For moderated models, we add one more column, status to the right of
each row. That column, as its name indicates, displays the current moderation status of each object you see in the list.
This helps you to identify the pending as well as challenged objects. See the figure:

9

django-monitor Documentation, Release 0.2 rc

Also, you can filter the objects by moderation status using the options provided in the box to the right of
change-list. Refer to the figure below:

You need not regularly visit change-lists of all models to know whether there are any objects to be moderated.
Moderation Queue is the shortcut for this. It will summarize the moderation status for all models in one page. In
your admin home page there is a Moderation Queue change-link under Monitor app. See the figure:

Clicking on it will lead you to a moderation queue page from where you can see a nice table listing out the number of
pending and challenged objects for each moderated model. An example figure is given below:

10 Chapter 3. How to use (for admin-users)

django-monitor Documentation, Release 0.2 rc

Note that the pointer points to the number 2 in the figure. This number indicates that there are 2 pending Author
objects now. Click on that number and you will be lead to the Author change-list where you can see both of the
pending objects. Similarly, you can find pending/challenged objects of any model from here.

3.3 How to moderate

Moderation is performed through 3 special change-list actions. They are, Approve selected, Challenge
selected and Reset selected to pending. The figure below shows the actions found in Author change-
list:

If the manager selects few objects, chooses the action Approve selected and presses Go, those objects will get
approved. Similarly, one can challenge objects too. Once some objects get challenged, the non-managers may check
them again and make required corrections. After that, they can reset the status to In pending using the action,
Reset selected to pending so that their manager gets to verify the entries again.

3.3. How to moderate 11

django-monitor Documentation, Release 0.2 rc

12 Chapter 3. How to use (for admin-users)

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

	Introduction to Django-monitor
	About
	Installation
	Features

	How to use (for developers)
	Registration (Enqueue)
	Special model-admin class
	Related moderation
	Data-protection
	Creation of objects by code
	Post-moderation hook

	How to use (for admin-users)
	Who can moderate
	What to moderate & from where
	How to moderate

	Indices and tables

